4 research outputs found

    Coupling Between Lysozyme and Glycerol Dynamics: Microscopic Insights from Molecular-Dynamics Simulations

    Get PDF
    We explore possible molecular mechanisms behind the coupling of protein and solvent dynamics using atomistic molecular-dynamics simulations. For this purpose, we analyze the model protein lysozyme in glycerol, a well-known protein-preserving agent. We find that the dynamics of the hydrogen bond network between the solvent molecules in the first shell and the surface residues of the protein controls the structural relaxation (dynamics) of the whole protein. Specifically, we find a power-law relationship between the relaxation time of the aforementioned hydrogen bond network and the structural relaxation time of the protein obtained from the incoherent intermediate scattering function. We demonstrate that the relationship between the dynamics of the hydrogen bonds and the dynamics of the protein appears also in the dynamic transition temperature of the protein. A study of the dynamics of glycerol as a function of the distance from the surface of the protein indicates that the viscosity seen by the protein is not the one of the bulk solvent. The presence of the protein suppresses the dynamics of the surrounding solvent. This implies that the protein sees an effective viscosity higher than the one of the bulk solvent. We also found significant differences in the dynamics of surface and core residues of the protein. The former is found to follow the dynamics of the solvent more closely than the latter. These results allowed us to propose a molecular mechanism for the coupling of the solvent-protein dynamics. (c) 2005 American Institute of Physics

    Role of Hydrogen Bonds in the Fast Dynamics of Binary Glasses of Trehalose and Glycerol: a Molecular Dynamics Simulation Study

    Get PDF
    Trehalose-glycerol mixtures are known to be effective in the long time preservation of proteins. However, the microscopic mechanism of their effective preservation abilities remains unclear. In this article we present a molecular dynamics simulation study of the short time, less than 1 ns, dynamics of four trehalose-glycerol mixtures at temperatures below the glass transition temperature. We found that a mixture of 5% glycerol and 95% trehalose has the most suppressed short time dynamics (fast dynamics). This result agrees with the experimental analysis of the mean-square displacement of the hydrogen atoms, as measured via neutron scattering, and correlates with the experimentally observed enhancement of the stability of some enzymes at this particular concentration. Our microscopic analysis suggests. that the formation of a robust intermolecular hydrogen bonding network is most effective at this concentration and is the main mechanism for the suppression of the fast dynamics. (c) 2005 American Insititute of Physics

    Coupling Between Lysozyme and Trehalose Dynamics: Microscopic Insights from Molecular-Dynamics Simulations

    Get PDF
    We have carried out molecular-dynamics simulations on fully flexible all-atom models of the protein lysozyme immersed in trehalose, an effective biopreservative, with the purpose of exploring the nature and extent of the dynamical coupling between them. Our study shows a strong coupling over a wide range of temperatures. We found that the onset of anharmonic behavior was dictated by changes in the dynamics and relaxation processes in the trehalose glass. The physical origin of protein-trehalose coupling was traced to the hydrogen bonds formed at the interface between the protein and the solvent. Moreover, protein-solvent hydrogen bonding was found to control the structural relaxation of the protein. The dynamics of the protein was found to be heterogeneous; the motions of surface and core atoms had different dependencies on temperature and, in addition, the surface atoms were more sensitive to the dynamics of the solvent than the core atoms. From the solvent perspective we found that the dynamics near the protein surface showed an unexpected enhanced mobility compared to the bulk. These results shed some light on the microscopic origins of the dynamical coupling in protein-solvent systems. (c) 2006 American Institute of Physics
    corecore